Experimental Study of Process Parameters in Dry Turning of AISI 4340 Alloy Steel Using PVD Coated Carbide Insert

نویسنده

  • Krishan Kant
چکیده

CNC Turning is basically a material removal process done to obtain the desired diameter. Even though the machine tool industry has made tremendous progress, the metal cutting industries using various machine tools continue to suffer from major drawback of not utilizing the machine tools at their full potential. A major cause leading to such a situation is thought to be the failure to run the machine tools at their optimum operating conditions. In this paper an attempt is made to investigate the various process parameters like cutting speed (V), feed (F), and depth of cut(D) to reveal their effect on MRR(Material Removal Rate) and Ra(surface Roughness) of AISI 4340 Alloy steel using one variable at a time approach. The optimal set of process parameters has also been predicted to maximize MRR and minimize Ra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Roughness, Machining Force and FlankWear in Turning of Hardened AISI 4340 Steel with Coated Carbide Insert: Cutting Parameters Effects

The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) ar...

متن کامل

Experimental Investigation of surface roughness in dry turning of AISI 4340 alloy steel using PVD- and CVD- coated carbide inserts

The performance of coated inserts was described using Response Surface Methodology (RSM) when turning AISI 4340 alloy steel using single layer PVD and triple layer CVD coated inserts. Cutting tests were performed under dry cutting conditions so as to reduce the effects of cooling agents on the environment. Surface roughness (Ra) was the main response variable investigated. The experimental plan...

متن کامل

Experimental Study & Modeling of Surface Roughness in Turning of Hardened AISI 4340 Steel Using Coated Carbide Inserted

Turning of hardened steels using a single point cutting tool has replaced the cylindrical grinding now as it offers attractive benefits in terms of lower equipment costs, shorter set up time, fewer process setups, higher material removal rate, better surface quality and elimination of cutting fluids compared to cylindrical grinding. In order to obtain desired surface quality by machining, pr...

متن کامل

Optimization of Surface Roughness in Hard Turning of AISI 4340 Steel using Coated Carbide Inserts

The use of multilayer coated carbide tool in hard turning has several advantages over grinding process such as; reduction of processing costs, increased productivity, short cycle time, compatible surface roughness and less enviornment problems without the use of cutting fluid. In the present study, an attempt has been made to evaluate the performance of multilayer coated carbide inserts during ...

متن کامل

Surface Roughness, Machining Force and Flank Wear in Turning of Hardened AISI 4340 Steel with Coated Carbide Insert: Cutting Parameters Effects

The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) are e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016